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- THE CLASSIFICATICN OF THE ORDER INDISCERNIBLES
OF REAL CLOSED FIELDS AND OTHER THEORIES

DAVID ALAN ROSENTHAL

Under the supervision of Professor H, Jerome Keisler

The primary result is a complete description of the types

of infinite indiscernible sequences in the theory of real closed

fields. There are two important parameters in the description.

One indicates the Dedekind cut of the type in the rationals and
the other specifies a particular exponenf in determining how far
apart the indiscernibles are. For any choice of these two param-
eters there are less than twenty fivé types. This information
is used to describe when the types are definable from each other,
The relationship between the indiscernibility types and the clas-
sical description of real closed fields is also given.

Another important example which is analyzed is the theory
;50£ divisible ordered abelian groups. A complete classification
:Bf the indiscernibility types is given as well as the relation-
:éﬁip of the indiscernibility types to the models of the theory.
?_6f:this theory we give the classification of the indiscernibility
y@és over arbitrary sets of constants.

 Several other examples are also included.
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1, INTRODUCTION

During the last forty years there has been a significant
effort in applying results in model theory to algebra. In the
last few years there has been an increasing interest in using
the newer techniques of model theory to classify the models of
a theory. This thesis will describe what the order indiscern-
ibles look like in some particular theories. The original use
of order indiscé:pibles dates back to the 1950's work of
Ehrenfeucht and Mostowski. They were interested in using order
indiscernibles to build models with various kinds of automor-
phism groups. In the 1960's Morley made use of indiscernibles
to obtain some important model theoretic results., More recently,
Shelah has used them to show that there are a large number of
models for unstable theories. Shelah has also used pure indis-
cernibles in classifying models of stable theories. And of
course, order indiscernibles have also been used by many other
researchers,

The focus of this thesis is on unstable theories and hence
here we cannot use the tools of stability theory. Yet the ide=z
of using indiscernibles to describe models is an important part
of stability theory. So the success of applications of indis-
cernibles to unstable theories is a hopeful signal that finer
structure theory can alsoc be obtéined for stable theories.

We begin in Chapter 2, with a look at the order



indiscernibles for divisible ordered abelian groups. In Chapter
3, we go to the more complicated example of real closed fields.
Finally in Chapter 4, we present a few more examples to get a

more complete view,

Definitions and Notations

Definition: Let A be a model for the language L, and let C be
a subset of A which carries a relation < that simply orders C.
{Note that < need not be a relation in L.) We say that C is a
set of order indiscernibles in A with respect to < iff for all

n, and for all finite sequences c. < C.... ¢, and d,<d,...d_ from

1 2 1
C, and, all formulas @,,A|¢@(el,02,...gn)++@(d1,d2,...dﬁ). {That is
@(cln.,cn) is true in A iff @(dl...dn} is true in A.) Some-

times we will simply say that C is an indiscernible set (in

A

Definition: A model A is a real closed field iff A 1is a model

of Th(R,+,-,0,1) iff A satisfies the field axioms and

iy any(yz =X V y2+x=0)

2.2 2
: 2)n xo+x1+u.,+xn—0 +-x0—0 Ynew

_ n n-1 _
S)T‘1 xn%O - 3y(xny X1y teeeXgy+x =0)  for all odd new.

If A is a real closed field we introduce < into the language and

define it by x<r+az:22=y-x. This makes < a linear order on A.



Definition: A model <A, <, +, 0> is a divisible ordered abelian
group iff <A, +, 0> 1is a divisible abelian group which is linearly
ordered by <.

We will abbreviate Divisible Ordered Abelian Group by DOAG.

Definition: A theory T has quantifier elimination iff every first
order formula is equivalent to a formula with no quantifiers.
(Abbreviated as T has QE.)

If a theory has QE then the definitions for indiscernibles may

be simplified.

Proposition 1.1: A subset C of a real closed field A is a set of

order indiscernibles iff for any n and any polynomial p(xl,...xn)
i <
over the rationals and any 4 < c, vee < c and dl < d2 < Le. < dn

from C, [==p(c1,c2,..acn} > 0 p(dl,dz,...dn] > 0.
Proof: Just use the fact that RCF has QE. a

Remark 1.2: Technically C may be ordered by < outside of L,
but since A is linearly ordered A is either < or > of L. So

we may assume < is <.

Remark 1.3: Since RCF has QF we may simply write p(cl...cn) >0
instead of . A|= P(cl’c2""cn) > 0. This is because if
p(cl...cn) > 0 is true in A then it is true in any model of

RCF containing ¢ ceeCpe

1



Remark 1.4: Technically the language of RCF does not include
subtraction, division or rational numbers, But each of these
is definable in L, so we may just as well use them., Note that

rational powers are also definable,

Proposition 1.5: A subset C of a divisible ordered abelian group

A is a set of order indiscernibles iff for every integer n

1 2

A l= Lnje; >0« Fnd, >0,

and for every ¢, <c, < ,.. <c¢_and d, <d, < ... <d_in C,
n 1 2 n

Proof: ©DOAG has QE. G

Remark 1.6: Remarks 1.2~1.4 also hold for DOAG's, except that

division and rational powers are not definable.

We may sometimes write a sequence <4 < ¢, < ene < C, < v
as <ci:ie N+>. More generally, if c. < cj whenever i < j we
will write the sequence as <ci:ieI>. Sometimes we will just
write <ci> if the index set is obvious. The concatenation of
‘the segquences <ci:ieI> and <dj:jeJ> when c. < dj for all

iel and jed, is written as <ci:ieI, dj:jeJ>. If we want the

*
- index set I in the opposite order we will write I ,

Definition: A l-type T for the theory T is a maximal collection
of formulas'{ek(x)} which is satisfied by an element of some

'ﬁbdel of T,



Definition: An (infinite) indiscernible type T for the theory T
is a maximal collection of formulas {@k(xl,...xn):k,ne N'} which
is satisfied by an indiscernible sequence <ci:ie N'> of a model

of T.

Definition: An indiscernible type T of index set I for the theory
T is a maximal collection of formulas {Ok(xil,.,.xi ):k,ne N+,

n
il""inEI} which 1s satisfied by an indiscernible sequence
<ci:ieI> of a model of T.

. + .
The use of T's of index set other than N 1is merely a technical

device.

Proposition 1.7: There is a 1 to 1 correspondence of indis-

cernibility types to indiscernibility types of any infinite index
set I, It is given by: the indiscernible type T corresponds to

TI={@(xil,...xin):11<12...1n in I and @(xl,xz...xn)eT}.

Proof: By the completeness theorem and the indiscernibility of
T, Ty is consistent. Since T is maximal so is Ty Finally,

every indiscernibility type of index set I must be some Tye 0

Cne of the main goals in the following chapters will be
 classifications of the indiscernibility types of same T. But
:sometimes we will just describe a T as a T for some other index

‘set I. Also if some collection of formulas'{@k(xl...xn):n,ke N+}



has a unique extension to an indiscernibility type, we may use
it to represent the indiscernibility type. In particular, if T

has QE we only need to look at collections of atomic formulas.




2. DIVISIBLE ORDERED ABELIAN GROUPS

The primary result in this chapter will be a classification
of the types of indiscernibles for DOAG's. We will also show

how they relate to each other, how they describe models, and a

little about how they relate to automorphisms or models. Finally
we will classify the indiscernibles over sets of constants.
Later, in Chapter 3, we will see how they relate to the indis-

cernibles of RCE's,

A. Classification of the Indiscernibility Types

Theorem 2.1: There are exactly 3 types of indiscernibles with

x1>0. They are determined by:
<

1) 2x1 X,

2) x2<2x1 and 2(x2-x1)<(x3-x1)

3 x2<2x1 and (xs-x1}<2(x2~x1)

Proof: These three cases are a partition of the types, so it

suffices to show that there is exactly one type for each case,

We will first show uniqueness and then existence.



(1) Uniqueness: Suppose an indiscernibility type T contains
x2>{l+€)x1 for some €£Q+. (Recall that we may use rational
coefficients since they are definable in the language.) Then
X3>(l+€)xzeT by indiscernibility. Also (1+e)x2>(1+€)2 X €T by
multiplying the hypothesis by (l+g). Hence x3>(1+€)2xleT by
the transitivity of <. So again by indiscernibility we have

x2>(1+€)2xlet. Iterating this procedure we get x2>(1+€)nX1€T

for all n. Hence x2>HxleT for all HeQ+. In particular, since

our hypothesis has 2x1<x25T we have x2>HxleT for all HEQ+. We

also have x1>0. Now any nonzero term is of the form

a X _+a

X +...ta
nn n-1"n-1

1%1 where an#O. We want to determine when a
is > < > > - >H;
term is > or <0, We have, X Hxn-l’ X, Hxn_z, X Hxl are

in © for all H>0 by x2>HxleT and indiscernibility. So if an>0

a'n
2 It - n—l L ! . ? n - !’-l e I ]

;E xn>OeT (i.e., T would have the term >0). If an<0 a similar

argument would show that the term is <0 in T. Hence all the
atomic formulas are determined., Thus by QE, there is a unique
indiscernibility type for case (1).
(1) BExistence: By direct construction, or by the compactness
theorem, we can find c,'s in a DOAG such that c >He and

i n+tl " n
cn>0 for all HEQ+ and for all ne N, Suppose we choose indices
i_<i <3 5 < <3 . e . >
11 1oeee<i, and R PR I and an#O. Then a c; + a,c 0

n 1 1
iff an>0. (By the same argument as in the Uniqueness part.)



So a ¢. +...8.¢c. >0 iff a >0 iff a c. +*...a,c. >0. Hence
ni, 1 i, n gl 175
b} 1
the ci's are a set of indiscernibles. Furthermore, they satisfy
x2>2x1 and xl>0. So they are type (1) indiscernibles and we have
existence,

This shows case (1) and we now show case {(2).

(2) Uniqueness: Let <ci> be any sequence of indiscernibles
satisfying xl>0 X <2x and 2{x2—x1)<[x3~x1}. Then by the argu-

ment in (1) Uniqueness, we must have c2<(1+€)c1 for all EGQ+.

Let di=ci~c1. Then 2di<dj for i<j, by hypothesis and indiscern-

ibility. So by part (1} the di's are type (1) indiscernibles.

1 ‘ 1
Also, for H>0, Hd H(c -c )<c “> —cl T ci++ cn<cl+ T =

cn<(l+ Fﬂcl++ Truth (by our hypothesis). So for all H5Q+ and

n>1, Hdn<c1. Hence by the argument of part (1) Existence,

<d,:ie N\ {1},c.> is a sequence of case (1) indiscernibles.

1
. _r . . +
(Note that the index set is not isomorphic to N, but the same

argument works since a formula only uses a finite number of

parameters from the sequence.) Now any temm a ¢ +...a,C; =

an(cn-cl)+"°+32(c2_cl]+bci {where b= a; +a ...+a ) =

ey

andn +...a2d2+bc1 = bc1+andn +...+azd2. By the (1) indis-

cernibility of <di,c > the sign of this term is determined.
'Hence C must satisfy a x, +...alx1<0 depending on the sign
-of the first nonzero coefficient of bx1+an(xn-x1)+n.aazixzaxl)u

‘Since the choice of C was arbitrary, all indiscernible types
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extending {xl>0,x <2x1,2{x2-x1]<(x3-x1)} must satisfy the same

2
formulas as above., Thus, since all atomic formulas are deter-

mined, there is a unique indiscernibility type for case (2).

{2) Existence: Let <di:ie N+,dw> be a sequence of case (1)
indiscernibles. (By {1) we have the existence of indiscernibles

of order type N and so by the compactness theorem we have the

existence of (1) indiscernibles for any infinite index set.)

Now let ci=di+dw' (Note that we are simply reversing the coding
given in (2) Uniqueness.} By the indiscermibility of the di's,
the ci's are also indiscernibles. We have 2c1=2(d1+dw) =

2d1+2dw>d2+dw=c2. Also, 2(cz—c1)=2(d2+d&g-(d1+dm)) =

2(d,y-d,)<dy-d;=c

- 1 i
z=d;=¢;=Cq . So the c;'s satisfy the formulas for

case (2).

(3) Uniqueness: Choose any indiscernible sequence <ci=i€ N+:Cw>
satisfying the case (3) formulas. As in part (2) we have

+ o, +
c2<(1+€]cl for all zeQ . Let di-cm-ci £or ie N . Then

¢, ~¢.<2(c cl} by hypothesis seo c¢,-c,<c -Cy by subtracting

371 2" 372 72

-chncl from both sides, Thus 2(c3~-c2)<(c3-~c1)° So 2(cm—c2)<

e - - - » - ] '
.{c:uJ cl) by indiscernibility. Hence 2d2<d1. The di s are

.indiscernibles since the c,'s are indiscernibles. Hence the
:di's are in fact type (1) indiscernibles with index set

.]N+) . [Note that the ordering on the di's is reversed.)



i1

+
= - i <
Also Hd2 H(cUJ c2)<02 for all HeQ (since C, (1+€)c23. So
. + ¥
<dl.l€( N ) }cl

case (2), the ci's are definable from this sequence and hence

> is a sequence of (1) indiscernibles., As in

all term inequalities reduce to questions about <di's,c1>.
And these are determined independent of the particular choice
of €. Thus there i1s a unique type extending the conditions of

case (3). (Technically we have only shown that there exists a

unique case (3) type of index set < N', {w}> but by Proposition

1.7 this is sufficient.)

£
(3) Existence: Let <di:ie( N+) ’dw> be a sequence of (1)}
*

indiscernibles., Let c¢,=d -d. for ie( N+) . Note that c,<c,<cgrs»,

i w71 17273
The ci's are indiscernibles because the di's are indiscernibles.
We have 201=2(dw-d1)>(dw—d2)=c2. Hence 2c1>c2. Also

- = - - - - - - = - !

(c3 cl) (dw dS) (dw dlj d1 d3<2(dl d2) 2(c2 cl). So the c,'s

are case {3) indiscernibles. So we get exactly 3 types. [

Corollary 2.2: There are exactly 6 types of indiscernibles,

They are (1), (2), (3) as in the theorem and their negatives.

Proof: If‘{ci} are indiscernibles and c¢,>0 then by the theorem

1

_ they are (1), (2) or (3). Tf c;<0 then {-ci}'s are indiscern-

ibles with -c>0, so the {-c.}'s are (1), (2) or (3). This

determines the type of the c,'s, so we have at most 3 types

with c1<0. For existence of the negative cases, just let



i2

ci=—di where the di's are (1), (2} or (3). O

B. Interdefinability

Even though there are 6 types of indiscernibles, from an
algebraic point of view we only need to look at one of them.

This is because they are "interdefinable' in the following sense:

Proposition 2.3: a) If a model A contains (1) indiscernibles of

index set I where I has last element w, then it contains (2)
indiscernibles of index set <{0}, I\{w}>. (b) Conversely, if
A contains {2) indiscernibles of index set I, where I has first

element 0, then it contains (1) indiscernibles of index set

<IN0}, {w}>.

Proof: {a) Let <c£>be (1) indiscernibles as in the hypothesis
and let d =c *c for ieIw}. By the existence proof of
Theorem 2.1, the di‘s are (2) indiscernibles. We show that
<cw,di:iel\{w}> are (2} indiscernibles. Let do=cw’ where

.0<I, Pick any temm t[xl,...xn). Then for any ?>1,
. - . _—3» .
t(do,di)>0 -t (di do,do}>0 >t (ci,cw) >0
: -> + -
' - o -
and_t(dl,di)>0 + t (di dl’d1)>0 < t (ci c ,cw+c1)>0

> are (1) indiscernibles and hence have

>
Now, <c¢.~-c, :iei,c +cC
S N | w71
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the same type as <ci:ie§,cw>. So t'(gi,cw) > t'(ci-él,cm+cl)>0
and hence t(do,gi) ~ t(dl,gi). Similarly t[do,ai)>0 >
t(dk,gi)>0 wherever 1>k. So <d0,di:iel\{w}> are (2}-indiscern-
ibles.

(b) Simply note that by (2} uniqueness of Theorem 2,1, the

<ci-co,co> are (1)-indiscernibles. d

Thus for appropriate index sets I, (i.e., with a last
element) the (2)-indiscernibles are recoverable from the (1}~
indiscernibles and conversely. That is, type (1) I — type (2)

<{0},IMwl = type (1) <cf0},INwh o}, {wh. > Y type (1) 1.

Similarly for type (2} to type (1) totype {2), when I has a first

element,

Remark 2,4: A similar argument shows that the (1)-indiscernibles

are also interdefinable with the (3)-indiscernibles.

. Proposition 2.5: There exists a unique maximal set of (1)~

‘Indiscernibles in any model A up to order isomorphism of the

By Zorn's Lemma there exists maximal sets. Suppose
l:ieI> and <dj:jeJ> are both maximal sets of (1)-indiscern-

lésf. We will define an order isomorphism for the index sets,
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Vh(nci<dj). Then <dj:jeJ>U{ci} is a larger set of (1)-indis-
cernibles, contradicting maximality. Hence for each iel there
exists a jeJ such that sdj<ci<Ndj for some £ and N, Let
£{i)=j. It is well defined by the (1)-indiscernibility of the
d.'s. It is 1 to 1 by the indiscernibility of the ci's.

J
Suppose £ was not onto, Say dk was missed. Then for each s

< i1 .
and for all n,nc;<d; or nd, <c.. Hence <c, :iel U{dk} is a
larger set of indiscernibles, and that contradicts maximally,
Clearly f is order preserving and hence f is the desired order

isomorphism, [J

If the maximal (I)-indiscernible set is indexed by an I
which has a greatest element then we can show there is a unique
maximal index set for (2)-indiscernibles. However, things may

not work out sc nicely if I has no maximal element.

Proposition 2.6: If A has a maximal set of (1)-indiscernibles

: <c;:ie N> then A has no infinite set of (2)-indiscernibles.

Proof: Suppose to the contrary that A cbntains such a set
'dj:jeJ>,with J infinite. Suppose that J has a subsequence
ﬁdéxed by N. Then by Proposition 2.3, A contains a set of

'-indiscernibles with index set < M\{1},{w}>, But this index

étfﬁoes not embed into N, contradicting the maximality of the

*
. S0 J must have a subsequence indexed by N . Say
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d1>d2>d3 onos, Now by the maximality of I, dlﬁti for some

i >i - - - -

ie N. Choose any n>i. Then dn-l dn,dn_2 dn,...d2 dn’dl dn’dl
is a sequence of (1)-indiscernibles. (From the definition of
{2)-indiscernibles). But this gives us a chain of length >i

below Css contradicting maximality. So there could not exist

such an infinite index set J. 0

Thus there is not necessarily a unique maximal index set
for (2)-indiscernibles. So although we have strong inter-
definability conditions, it is easier to just work with the
(1)-indiscernibles. And since the (1)-indiscernibles yield all
the information about the (2) and (3)-indiscernibles we might

as well,

Ca Structure Theory

The maximal (1)-indiscernible index set I is a natural
algebraic invariant. In this section we relate it to the stan-

dard terminology used in describing DOAG's (see Fuchs).

Definition: A systenm [H,Bﬂ[ﬂeﬁ)] is called the skeleton of
the DOAG A if

1) I indexes the principal convex subgroups ZO of A
in inverse order, and

2) o < C. is a jump in Eo then B_ = Cﬂ/DH.
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Proposition 2.7: If a maximal set of (1)-indiscernibles of A

are <ci:ieI> and A has skeleton [H,BW(WEH)] then

a) (1,<) % (I,

and  b) Cp {x: req (-rc <x<re )} and

D

1 {x:¥reQ (—rcﬂ<x<rcﬂ)}
Proof: Clear from Fuchs.

Note: Fuchs actually gives definitions which include the non-

abelidn case, so there are more details needed there.

Remark 2.8: The Bﬂ's are subgroups of ( R,+}. But the Bﬂ's
are not specified up to ordered group with unit isomorphism.
In particular, the "irrationals" in B1T are depeﬂdent on which
. is chosen from A.

We now look at which groups have maximal (1)-indiscern-
ibles of index set I.
Definition: Let W(A,:ieI) ='{xe.HIAi: such that the nonzero
coordinates are a well foundéd széuence of (I,>)}} =

"Lexicographic Sum',

Note: Fuchs has things ordered in the opposite direction
because Il is opposite to I, If we let the Ai's be ordered

divisible abelian groups, then we can define + on
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W(Ai:ieI) in the natural way and again get a divisible ordered
abelian group.

By the Hahn embedding theorem, every DOAG A with skeleton
(Bi:iel) is embeddable into W(Bi:isI). Hence the largest group
with maximal (1)-indiscernible index set I is W{ Ri:ieI) where
Ri= R. (since Bis R). The smallest group with maximal index set
I is the "E-M model over I" namely @ igIQio 30 the groups with
maximal (1)-indiscernible index set I are extensions of
® Z.IQ. by 1)} replacing some of the Qi's by Aig R where Ai is a
DO;G Zid 2) allowing well founded sequences of ci's (i.e.,
extending ez inside W{I)}. Note that for extensions of kind
2) we require the new group be divisible, so we have to close
under both group operations and divisibility. Also note that
if I is finite then A is a divisible subgroup of ® | R..

ler
Thus I really is a nice algebraic invariant of a model A.

D. Automorphisms
We now take a brief look at the automorphisms of certain

DOAG's,

Proposition 2,9: Let A= Qi = the divisible group gen-
iel
erated from the (1)-indiscernibles <ci:ieI>. Let F be an

automorphism on A, Then F=F3°F2°F1 where
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Fl is the automorphism induced by an automorphism on (I,<) and
F, is multiplication of < by ai>0 and
F3 is an isomorphism which takes c, —* i *Ps where P is a term
containing only cj's with j<i.
. . . <<e, . i
Proof: Suppose F.ci - alcji+pi where P cJ_ {(We will use

1
a<<b to mean for all ne N na<b.) Then i ji must be

an automorphism en (I,<)., (Since F is order preserving and
and the ci‘s are a maximal l-indiscernible set,)

Let Fi be the induced extension on A,

(- . C. +,..0Q. C.
Le€es Q5 C5 45 ¢

—{. ¢ . Cop. y*eoae Cpops e
nn 11 chl) 12 F(lz) ln FflnJ

. . -1
: -
Fl is clearly an automorphism. Now Fl OF.ci 2.c.%q; where
q;<<c.. Let F,:c. > a.,c. and extend it in the obvious way to
i i 2771 i1
all of A. Since FiloF is an automorphism aici+qi>0 and hence

ai>0° Thus F, is the desired kind of automorphism. Now

-1 -1, 1 _r~1 1
F2 Fl QF.ci et E;-qi. Let F3~F2 F1 °F and we have our
result, [J

Remark 2.10: Every automorphism on (I,<) induces an auto-
?morphism on A and every map c.* aici,ai>0 induces an auto-
;%Prphism on A. But not every ¢, > C.*P; with Pi<<ci is
.éﬁiautomorphismo It is a monomorphism, but it may fail to be
:_ﬁfo.’ For example, let I= N* and let A be the group generated

Tom <¢;tiel>. Define Fic, - ¢;*cy, 1 and extend it in the
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natural way. Then F is no* onto because ¢y % F(A) (di.e.,

G(‘Elaici)=q(c1,,..,cn)+a cn+1#c1). So the study of F's on

n
1..-
ey Q, is a study of which "F 's" are onto.
iel

(Note: There are F's which are omto but have no fixed points.

€8> F:L:Zni-l M c2n+1+C2n+2+c2n+3’ “on+2 ” c2n+2+c2n+3)'

So in studying automorphisms or DOAG's it is useful to look

at the maximal index set I.

E., Indiscernibles over Sets

We now look at what happens when constants are added to

the language.

Definition: A set <¢;:1el> of a model A of a theory T is a
set of order indiscernibles over B if they are order indisg-
cernibles in the theory T,=Tubiag(B) (i.e., A|=0(3,8) « o(d,B)

. . -+
for any two increasing sequences ¢ and 3).

In the case of DOAG's, C=<ci:ieI> is a set of indiscernibles
over B when for every c1<u.,,<cn and dl<"°<dn in C and beB

Yn,c.+5>0 iff Tn.d.+b>0.
1 1 1 1

Remark 2.11: Since (p/q)b is definable in TB We may assume
that B is a DOAG. So it has a maximal set of (1) -indiscern-

‘ibles, say <bj: jed>,

To begin, note that if {ci} are indiscernible over B,
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in

then {ci} is a set of indiscernibles (i.e., indiscernible

indiscernible over ¢). Here'{ci} or theilr negatives must be
of the form (1), (2) or (3} of Theorem 2.1. S0 we will divide

the classification theorem into three lemmas.

Lemma {1): The types of (1)-indiscernibles over B are in 1
to 1 correspondence with the proper Dedekind cuts D of J.

(i.e., bjeD < bj<xeT).

Proof: Uniqueness: If <Ci> is a set of indiscernibles then
they must all lie in the same cut of the'{bi}'s. Furthermore,
they must lie in a proper cut since there are an infinite number
of them. Suppose C is any set of indiscernibles in the proper
1 -
. < ,<e. <= < <, .
cut D, Then bJsD+ bJ ¢y bJ C1<q Sy nbJ Cy> an € Similarly,

< ' ‘ -
bk D+ c<b *nc<b, . So {ci} I U{bj}jsJ are a set of (1)

k ie
indiscernibles (by the existence proof of Theorem 2,1). But we
need to show more. We need to know that for any BeB

znici+g 2 0 1is determined (independent of the particular

choice of C). If all the ni's are zero it is obviously deter-
mined, so assume nk#O. We show that in this case the inequality
is also determined. Well b N bi for some r and bj by the

- maximality of the'{bi}‘s. That is qlbi<g<q2bi wherever

T3ql<r<q2. (Note that r may be irrational,) If bi>{ci}'s (i.e.,
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bl%D) then the sign of r determines the inequality. If
bi<{ci}'s, then Enicizo determines the inequality. Since the
ci's are of type (i) this inequality is determined. So in any
case all the formulas Znixi+g20 are determined., This type of
formulas is realized by any C in the cut of D, so we have

uniqueness,

Existence: Use the compactness theorem to find (1)-indiscerni-
bles <ci> in the D cut of the bj’s. The above procedurs for
determining inequalities works and is in fact independent of
the indices of the ci'su Hence the ci‘s are indiscernible

over B.

This establishes thé 1 to 1 correspondence. 0

Before beginning the next lemma we will describe the
1-types over B, Pick any DOAG A>B and any ReA, £>0. Let
Gﬁ be the collection of atomic formulas ovgr B realized by X.
By QE Gﬁ determines a l-type. Since we are working with in-
discernibles we are only interested in those Gx’s which contain
x#b for every beB (i.e., the nonprinciple types). Now any Gx
gives an approximation to x by b's in B, For example, Gx may
say that x is approkimately b with an error of less than bjo
So each x-b>OeGk corresponds to a cut in the bj’s indicating
- the "error temm'. Let Dk = "inf of the cuts'. That is,define

D, by:Viel (i>D <> 36eB(0<x-§<<bj)) and



22
j=D, +* 3beB gql,qsz(0<qlbj<x~b<q2bj) A VK < j(mk>Dx).

. . .
J<D = ~(3>D ) A ~(j=D ).

We will say b>Dx iff b?}jrbj and j>Dx' Similarly for b=D, and b<D_.

Lemma (2}: The types T of (2)-indiscernibles over B may be
classified as follows. First T contains some non-principle
type Gx' For those Gx such that b>DX with xl—b in a proper
cut Dx’ the extra condition

b - .
a) 0 Xy b X,-xy is in T

will completely specify T. For any Gx and for any proper cut

Dt of {bj's} with D' < Dt the extra condition
“b<x. - is q
bJD, %(O<x1 b X, Xl) is in T for each
‘ <X X< ig i <pr<
be B, and bj Xy Xy bk is in T for each bj D bk

will completely specify t. These are the only possibilities.

Proof: First note that if <ci>'s are (2}-indiscernibles,
then di=ci-c1 are (1)-indiscernibles and so must lie in some

fixed cut D' of the {bi}'s. Suppose 0<¢,-b<b, <c,-¢,. Then

k 7271
cz-c1<c2—b by adding C,=Cq o both sides of 0<c1-b. But

- then 02-b<bk<c2—c1 by indiscernibility, a contradiction.

Now suppose that for some fixed b, just 0<c1-b<c Then

271
by the above the di's and cl-b mist lie in the same cut of

1 “ht - - i
the {bj} s. Indeed, cq=b <b.1<n(c1 b]<c2 ¢, also yields a
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contradiction so cl~b and ci—cl

this forces D, to be a proper cut in the {bj}'s (1.e.,

are in the cut Dx' Note that

Dx#j for any jeJ). Suppose also, that bfpx. Then b<Dx’

since Dx is a proper cut. Now 2(cl-b]<c2-c by hypothesis

1

and indiscernibility. So 201—2b+c1<c2 and hence 201<c2, which

is a contradiction to the fact that the ci's are type (2).

S50 we must have b>Dx' So if there exists cl‘s of type (2)

with a b s.t. 0<c1—b<c2-cl then we must satisfy the conditions
about case {a). We now show that case (a) is well defined.
Suppose for some Gx that both b,b* satisfy the assumption for

case {a). Then ¢,-b and e¢,-h* are in D . Since D_ is a
1 1 X X

proper cut we have |b—b*|<DK. Also Cy=¢y
- - - - -b+b-b*<c_ - “h¥*<c, -
So ¢y b<c2 < - n(c1 b)<c2 ¢p ¢ b+b-b <c2 o +-cl b <c2 cye

(And conversely.) So 0<x, -b<x

is in Dx’ by above,

- i _h* -
p xleT iff 0<x1 b <x2 xleT.

On the other hand, if we are not in case {a) then for every

beB ¢, ,-b>0 <+ ¢c,-b>_.-c,., Hence the c,-c_.t's are in a cut
1 1 271 i

i
D’fpxo Indeed D' is a proper cut because there are an in-
finite number of ci-cl's in D'. So hence we satisfy the con-

ditions for case (b)D,. Thus the outline is a partition of
the types. It remains to show existence and uniqueness for

each case.

Case (a): Uniqueness: Suppose C is a set of indiscernibles

realizing Gx’ satisfying the conditions for (a) with b,
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and such that 0<c1-b<c2~c1. By above, cl—b and c;=c; are in

the cut on Now,
1 - 1
im e +b!>0+> m(c; ~b)+mb+ Zmidi+b > 0,

< m(c -b) + Zmidi+bn> 0 .

If b”>Dx then its sign determines the inequality. If b“<Dx then
the sign of m(cl-b} + Emidi determines the inequality {unless
m=0=m1=..u=mk and then the sign of b" does). Now cl-b<c2-cl
%{cs—cl . Hence n(cl-b)<(c2—c1 . So <c1-b,di> is a
sequence of (1)-indiscernibles, and hence the sign of m(cl—b)+
zmidi is deteymined. So these conditions determine 2 unique

type.

(a) Existence: Suppose we have an appropriate Gi for (a).
By Lemma (1) choose di‘s which are {1)-indiscernible over B
and in the cut Dx' By assumption we may fix ab such that
b>D_ and x-b is in the eut D_. Let c.=b+d.., Then c.-b=d,
X X i i i i
- =d.-d.>nd_=nlc_.~ 3 ]
and ci=Cy di d1 nd1 n(cl b). Note that since the di s are
indiscernible over B, the ci's are indiscernible over ¢.
In fact they are (2)-indiscernible since b>Dxo Now we show

¢ is of type Gx' Well for b'>0,

x-b'>Oer - (x-b)+(b-b')>Oer + b>h' or b'-b<DX.

While cl-b'>0 +d1+b—b'>0 +b>b' or b'-b<on
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So ¢y does realize the type Gx' It remains to show that the
¢.'s are indiscernibles over B, Well n(c.-b)=nd,<d, -d,=c,-c..
i i i7"k ik L

Thus <ci-b,c —ci:k>i> are (1)-indiscernibles for any i. Since

k
they lie in Dx’ we can apply the algorithm in Lemma (1) to

decide any inequality., Since the algorithm is independent of

the indices Zm.c. +b1>0 <> Ym, ¢, +b'>0. Thus the c,'s are in-
171 i’i : i
discernibles over B.

Case (b): Uniqueness: Suppose we have a set of indiscern-

ibl i ~b> -
1bles with cl b>0 +c2 c1<c1

1 For any b such that Cl_b>0 we have

= - < - i - < [ - 1 v~
ndi n(ci cﬂ 5 b. Thus if cq b>0, di.1>1, cq b> is a se

-b and such that the ci—cl‘s lie

in D'. Let d.=c.-c
i i

gquence of {1)-indiscernibles over ¢. Now we test if ne, +
Emidi—b'>0. We may assume n#0 because otherwise the in-
equality is determined. Now ncl+zm1~di-b'>0 -+ n(cl—b") +

Zmidi>0°

Case (i}: c1~b">0 (1.2, xl—b”eGX) then (cl-b”)>ndi
S0 n(cl-b”)+ Zmidi>0 iff n>0,

Case (4ii): cl—b”<0. Then cz-b"<0 and hence c2—c1<b”-c1.
So ndi=n(ci-c1)<b”—c1. Thus n(cl-b“)+2midi>0

iff n<o0,

- 80 in either case the formula is determined and we have unique-

‘ness.
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Existence (b)D,: Suppose we have GX,D' such that D'ris a
proper cut fpx' Let X realize Gx' Suppose X-b<0. Then there
is no bj,jeJ such that b—§<mbj and bj<Dx‘ Otherwise,
0<)'E--b+mbj<2mbj > Dx<bj’ a contradiction. So we may choose
(1)~indiscernibles <d,> over B in D' satisfying X-b>0 > ﬁ—b>di
and b-¥>0 - b_§>di {by compactness and the fact that D' is a
proper cut <DX}. Let ci=§+di. If c;-b>0 then £+d1—b>0,

hence £-b>—d1. Suppose 0<b-X, Then b~£>d2 by choice of the

d,'s. But then ﬁ-b+b-£>d2-dl, a contradiction, So c,-b>0 ~
£-b>0, Thus ﬁ—b>d2 by the choice of the d;"'s. So €ymcy =
-d. <d. <®-b<lR- = i —c_<C. =
d2 d1 d] X-b<({X b)-:-d1 Cl+b {i.e., C,y=Cq e,y b whenever
s o =d . .. .
Cl b>0), Also Cy=Cq d2 dl which is in the cut D'. We show

the ¢, 's are indiscernibles over B, Zmicj +b1>0 <+ YmRe Emidj +

b'>0 ++ nX+ Emidj.+b1>0 where n= Zmi. We ;ay assume n#0, sincz
the di's are indiécérnible over b'. So, n£+2m1dj‘+b'>0 +>
n(ﬁ-b”)+Zmidj.>O. Now <dj1”"dj , |x=b"|> is a ;equence of
(l)-indiscernibles, 50 n|§-b“|+2midj.>0 < n(%-b")>0. Hence

i
the ci's are indiscernibles over B, Note that since §<‘>ndi

and c2—c1=d2-d1, they are in fact (2)-indiscernible over B. O

Lemma (3): The types T of (3)-indiscernibles over B may be
classified as follows: First T contains some non-principle
type Gx' For those Gx such that b>DX with bdxl in & proper

cut Dx’ the extra condition
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P <y ..
a) 0<b Xy<X ~X; is in T

will completely specify T. For any GX and for any proper cut

D! of'{bj's} with D'jpx the extra condition

b)D, %(0<b—x1<xw—x1} is in T for each

oy < s <1
beB, and bj XXy bk is in T for each bj D <bk

will completely specify t. These are the only possibilities.
Proof:  Essentially the same as in Lemma (2). g

Theorem 2.11: The indiscernible types over B are classified

by Lemmas (1), (2) and (3} and their negatives,
Proof: By above, a

Remark 2.12: One can now derive as a Corollary the indiscern-
ibles for the theory of divisible ordered abelian groups with

unit,
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3. REAL CLOSED FIELDS

The main objective in this chapter will be the classi-
fication of the order indiscernibles for RCF's., We will also
describe how the types relate to each other and how they des-

cribe models,

A. Classification of the Indiscernibility Types

Since the classification is rather long we will break
up the theorem into several lemmas., We will be able to obtain
most of the classifications by just looking at those order in-

discernibles <ci> for which c1>n for every ne N. This condition

will sometimes be abbreviated as ¢y is infinite, or as c1>Q, or

>
as cl R,

Lemna I: There is exactly one type of indiscemrnible T containing

1+g

xl>Q and Xy

EX
<x2 for some £¢Q .

Proof: Uniqueness: In the restricted language of 1,-,<,
the positive elements of a RCF form a DOAG. So in particular,
Lahy indiscernible type restricted to this language must be a

‘DOAG indiscernible type, If we add Q+ to the language then the

ype is a DOAG type over Q' . Now since xi+g<x26’r it must be

type (i). In fact, since x1>QeT the DOAG type over Q is
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completely determined, In particular all questions of the form
qlxlnl x2n2,..xknkzler are determined, Namely, qlxlnl.o.xknk>let
iff the highest indexed exponent which is not zero is positive,

or all the ni’s are 0 and q1>1. Of course we need to decide

all polynomial questions to get uniqueness as. a RCF indiscernible

type. Well for any polynomial one of the monomials is largest

in absolute value, by above. Suppose p(xl,.a.xn)=z m. where

my is the largest monomial in absolute value. Then for every i

|m1| > xi Imi] for some X, (for instance the highest indexed

J 3
variable in m,/m.). So in particular, |m | = }|m,

o Hence

m, o+ ) m.>0 iff m >0 iff the leading coefficient of m, is
1 i3 1 1
positive. So all polynomial inequalities are determined and we

have uniqueness,

Existence: By direct construction or by compactness we can find
c,'s such that c,>n for all n N and such that cl<c for all
i 1 k Tk+1

i n,ke No Now p(ci,cz,...cn)>0 iff the procedure given in the
uniqueness says it is. This is because the procedure's correct-
‘ness only depends on the conditions that we already have, This
:p?ocedure is also independent of the particular choice of in-
lices, so P(Cl’c2'°'cn)>0 iff p(ci se0eCy )>0 where i

- 1 n
i at is, the ¢;'s are RCF indiscernibles. a

i, 0eel W
1 7°2°"°"n
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We will usually call this type of indiscernible, I-
indiscernibles, or.perhaps + indiscernibles. The reason for
the "+»'" will be seen shortly.

Now suppose we have ci's spaced far apart but not quite
as far as in Lemma I. We then have a situation much like that

for DOAG's,

Lemma II: There are exactly two types of indiscernibles with

x1>Q and such that 2x.<x <x2 depending on

17%2°%
) (v )2
Xz Xz]
A.- — >
X]-‘l XIJ
or
B r 2
X X
B, || < =2
%9 *1

Proof:; First note that x2<xi together with formulas A or B is
just the multiplicative version of DOAG types (2) or type (3],
respectively. Indeed the proofs will use the same coding scheme.

Let <ci> be any sequence of indiscernibles for Lemma II, By

Lemma I, we have c <cl+€ for all eeQ+. We also have Hc,<c

271 172
for all HeQ+. For if c2<Hc1 for some HeQ+ then c3<Hc2 and so
c2<H2c1° Repeating this argument we get c2>Hc? for all ne N,
In particular, since <ci> satisfy x2>2x1 we have the desired

result. Now clearly we are in Case A or in Case B, so it remains

to show uniqueness and existence for each type.
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Case ITA: Uniqueness: Suppose <ci> satisfy conditions IIA,
c

Let d = EE for n>1. By Theorem 2,1, the di's are DOAG type
1 c
(i) indiscernibles, so d§<d3. Also Eg->Q, 50 the di's >Q.

Again by Theorem 2.1 we have d?<c Hence by Lemma I,

1°
<di: i>l,cl> is a sequence of I-indiscernibles, Now any
p(zi)>0 = q(Ei,cl)>O for the natural q. So the type is deter-

mined independent of the Particular choice of ci’su Hence we

have uniqueness.,

Existence: Let <di: ie N+, dm> be a sequence of I-indiscernibles,
Let Ci=didw for ie N+. Since the di's are indiscernibles so are
c c

the c,'s, By Theoren 2.1, ¢ <c2 and (—§§>(~232a Also,

1 271 c1 c1

= = = t "

2cl dldm<d2dm <, and Q<d1dw €y- So the C; 'S satisfy the
formulas of IIA,

Case IIB: Uniqueness: Let <ci: ie N+’cm> be IIB indiscernibles.
c

*
Let d,= ;59 + By Theorem 2.1, <d.: ie( N") »¢,> are DOAG (1)-
i c
indiscernibles. Also éﬁ >Q so by Lemma I, it is a sequence of
i

RCF I-indiscernibles. The ci's are definable from these, and so

the type is determined.

*
Existence: Let <di:ie(N+J ’dm> be a sequence of I-indiscernibles.

d
Let c,= EQ . Since the di's are indiscernible so are the ci's,
i C c
We have c_2>¢_ and C—§J<(-2J2 by Theorem 2,1. Also
1 2 c1 Cl
dm dm dyy
Q< += =¢. and 2c =2 == < — =¢_, Hence the c.'s are IIB-
di i 1 dl d2 2 i

indiscernibles. 7
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Now in the remaining cases we have x

<x <
1% (1+€}x1. So we

need a way to classify the types when x, and x, are closer

2 1
42

q
together, We will use the r such that x11<x2~x1<x1

ql<r<q2 (i.e. X2~xl%x§). Lemma 1 corresponds to the case

for

r=+o, Lemma IT A,B are cases where r=1., The remaining cases

T
- <
XSy

and x§<x2~xl. This will lead us to Lemma III and Lemma IV,

respectively, Lemma V will be the case where r is irrational.

have r<l. For r rational there are two possibilities,

The only other possibility is r=-«, and this will by Lemma VI.
Thus Lemmas I-VI will be a complete classification of the types

with X1>Q‘

Lemma II1:  For each rational rsl there are exactly six types of

T
=X, <X,

indiscernibles containing x1>Q and xq<x2-x1 for g<r and x2 1%

1
They are classified by:

A, (XS_X1)>2(X2_X1)

r r
X X

T oa are type I (i.e., the =
i1 171

's satisfy the type I

formulas).

<
1 are type ITA.
X, -X
i71
T
!
% are type IIB.
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are type IIA,

are type IIB,

Proof: Note that we are appealing to Proposition 1.7 in describ-
ing the B cases, Let <ci> be any Sequence of indiscemibles
satisfying II(xr) (i.e. satisfy the initial hypothesis of Lemma IT
for r). First we show c:2--c1>hc1 for aill heQ+. For suppose
02-c1>hc§ for some heQ+. Then cs-c2>hc§ by indiscernibility. By
adding these two inequalities we get hci +hc§<c3-c1.

27Cy - Iterating this Procedure

Hence

2hc§<c -C.+ And thus (2h) c§<c

371
we get Hc§<c2—cl for all H€Q+, which contradicts the fact that

2-xl<x§. Now let us see that each possible

type is in exactly one of the six cases (i.e., we want to check

the ci‘s satisfy x

that the lemma actually partitions the cases). Well clearly any

type is either A or B but not both. Suppose <ci> realizes
c

ITI(r)A. Then since c2—01<hcf for all heQ+ we have H < 3 _i
i1
T
. . c
for all HeQ {i.e., Q < . Also since (c,~¢,)>2(c.-¢ ) we
ci—c1 3 71 2 71
cr ek
1 1 1 1
have —_— > 2 s S50 > 2 . Hence
“27¢ €371 “27% “37¢1
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T r Tr
c c C

= - for i<j. This means <c ~
i 71 j 1 i7"l

cieyr 1))
are Lemma I or Lemma II indiscernibles. So any IIIA type must

be in case Al, A2 or A3. Now suppose <Ci:iEN+’Cm> are ITI(r)B-~

C.
1

indiscernibles. Then Q <

by above and indiscernibility.

w 1
+
- - - 1< -
Now (c3 cl)<2(c2 cl) - (03 cl) (1+h)(02 cl) for all heQ by
an indiscernibility argument., Thus (c3—02)<h(c2~c1) for all
heQ+. So i - < L for all H€Q+. Thus z_ 2 for
¢ -Cr  C_-C c,~Cc. C -C,
371 3 72 2ct LW w j
i<j by indiscernibility, Hence — _3 < - for i<j. This
Cr W i U-Jj
means <c ? : ieN+> are Lemma I or Lemma II indiscernibles.
w i

So any III{r)B type must be in case Bl, B2, or B3, It remains
to show that we get exactly one type for each of the cases.
Cases Al, A2, A3: Uniqueness: Let <ci:ieN+> be any sequence of

indiscernibles in Al, A2 or A3. By the case hypothesis

T-g C§ £ ] n
¢, <ec,-c, and so < ¢;. Hence < ¢, ¥n.
1 i1 C.=C 1 .- 17
i1 i 71
cr : cT .
. . . . E S
Case Al: — are I-indiscernibles, hence (C i () \{1},Cl>
i71 i 71

are I-indiscernibles.

T
_ c
- Case A2: are ITA indiscernibles, so
: ;7S
T
c
1 T
€% 1
{ = » T ) are Indiscernibles, by the proof
Cq w "1

of lLemma IIA.
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T
c -c c
Hence < w 1 R 1 s, C > are I-indiscernibles
c.-C c =C 1
i1 w 1
T
‘1
Case A3: are IIB, so
. =C
il
I
1
Ch-C cr
< 2r 1 >3 Ec > are I-indiscernibles, by
c 2 71
I
=%y

the proof of Lemma IIB,

¢, =¢q ¢y
Hence s ~— , C > are I-indiscernibles.
CymCy 1

1

Now in each of the cases Al, A2, and A3 the ci’s may be encoded
as [-indiscernibles., Thus III(r)Al, III(r)A2, and III(r)A3

specify a unique type.

Existence: Let <di: ie( N+)%> be I, TIA or IIB indiscernibles

and choose e>d? Yne N (by compactness). Let ;= E-—-er+e

d.
i

(i.e., undo the coding given in the uniqueness part).

We check that the ci's arg ITI(r)-indiscernibles of case Al,
A2 or A3 depending on the choice of di's as I, IIA or IIB.
First it is easy to verify that the di’s are in fact "indis-

- - .+
~cernible over ew”, that is, p(di,’ew) 0 p(gi,ew)>0 whenaver
J
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d. >d. °'“>di . Hence the ci's are indiscernibles, (c2~c1) =

11 12 n
1 1.r %Y oo r d;dy e/2
(5— - e = <e"<cl. So c,-c.<cl. Also, ——— <d _<e
d2 d1 dld2 1 27171 dl-d2 371
d, -d
_ 12 r Tt -£/2 _ r-g/2 S I-€ . N}
S0, Cy-Cy = dldz e e e = @ ] (i.e., Cy-Cq>Cy
for all g<r), thus the ci's are III(r»). We have CymCy =
d. ~d d.-d
dld 2 e’ and CgmCy = dld 3 e’. Now we check that (cs-cl) >
172 173
2(02-c1). Well,
dl-d3 r, 4179 o

{c_-c )>2(c,~c, ) ++ ——/= g >2 e
371 271 dld3 d1d2

(dl-ds)dld2>2(d1-d2)dld

3
d_-d
173
> d.>2 d
. 2 [dl-—d2 3
dy-dg
Now 1 < < 2 by the choice of the d.'s. (Remember the
d1~d2 i

di's are ordered backwards.) Hence,

] d3 < d2>2dS < Truth.

T (——e +e _—a te
Cl _ dl i dldi d1
€17% Lol dludi "
d. d
i 1
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T v
d -C—1-—e+e
1<oi—<lreand 1< |- < 1+e  for all ecQ’ .
171 e
T T
1 c
So di < — < (1+€)di. In particular, the ——— are type I,

i "1 i1

IIA or IIB indiscernibles depending on the choice of the di's.
(This is easy to verify.) So the ci's are ITI(x)Al, I1II(r)A2
or III(r)A3 depending on the choice of the di's. Hence, we
have existence for all the A cases,

Cases-BI,‘BZ, B3: Uniqueness: Let <ci:ie N+,cw> be type III(r)B

T
. g . - - . C n
indiscernibles by the case hypothesis E }< ¢y for all n.
Hence, l ) 1
FC rmy c]’.‘ n c
1 2 < ¢, for all n, Now 1 < —l-< 1+2, so that
c ioie ~C 1 c
W Vw71 w
{ Ci 1
<c¢,< ¢ for all n.
c -C 1 @
LU.) 14
e et
1: I-indi ib h - )
Case Bl: are indiscernibles, hence s C
c - c -cC. W
w i w i
are I-indiscernibles.
T
c
Case B2: - are IIA, Then
Cy=Cs
ot
w
r
CyCy c ) ‘
{ , w > are I-indiscernibles
T c -C
Cy w 1
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, c1> are I[-Indiscernibles.

m’cm+1> are 1II{r)B3. Then

oI
o1
cr c  .-C et
wel are II B. Thus < arl S wrl > are
Cur1™% ot Cur1™%
w+1
“ur1™%
¢ . =C et
. i +
I-indiscernibles. So Cw+l_cl ) 3 = EC s Cw+1>
wel Tw wrl Tw

are I-indiscernibles.

In each case the ci's may be encoded as I-indiscernibles
and so ITI(x) Bi, III(r) B2, and III(r) B3 each uniquely specify

a type.

Existence: Let <di:ie N+,dm> be type I, IIA, or IIB
indiscernibles and choose e>d$ for all n.

-Let c, = e- %f-er‘ﬁor ic N'. As in the A cases the ci's are

i : d.-d

 indiscernibles. c,-Cc, = (é-— E—J T - —2—~l-er < cl, So
: 2 71 d d d.d 1
d -d 1 2 172
T 2771 r T-E T-€
- - = ——— > T
c1<cl. c2 cl 13 e > e cl . Hence the ci s
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-c. )< -
are III{r}. We want (c3 cl} 2(c2 cl). Well,

d_-d d,-d
371 7 21 r
(Cp-c )<2(c =c ) > ——= g < 2 e
371 2 71 d3d1 d2d1
d,-d d
- 1'd2d <2
3 271
di—dl
Now 1-g < ) <1 for i»1l, since the di's are I, ITA or IIB,
dS-dl d2
So . < 2. By above, this means (¢c.-c.)<2(c,.-c.).
d3 dz—d1 371 271
So we are in a case III(r)B. Also,
1 . T 1 nT
T (e~ =— e7) (e- =— &™)
Cy ) dw _ dwdi ] dm
CuC4 1 1. r 99 et
G-
i w
d (e~ g "
1< & < 1+ and l-e<——-—-(£——<1 and so
d -d, T
w1 e
T T
<, c
(1-e)d, < < (l+g)d.,., Hence the are I,
i ¢ -~c. i -c.
W i w i

IIA or IIB depending on the choice of the di's. So we have

existence for the B cases. [




It is interesting to see the interconnection between the
DOAG indiscernible types and those for RCF. For each choice

of ci's, let the di’s be a natural encoding of the ci's. Then

we have:
2 2
>
, d1>d2 d1 d2
' dl<d2
d d.{2 d d |2
3s 22 B |22
d1 dl d1 dl
+
<,
2c1 <, I ITA I1IB
2c1>c2
II1IAl IIIA2 ITTA3
(cs-c1)>2(c2-cl)
2c1>c2
ITIBI IIIB2 ITIB3
(c3—01]<2(c2-c1)

The Lemma IV cases will be in the table like the III cases,

The Lemma V and VI cases are similar but not identical. We

will see this later,
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Lemma IV: For each ratiemal r<l there are six types of indis-

. . A T, _ q ‘
cern1b1es_w1th x1>Q,.xl<x2 Xl and x, x1<x1 for g»r. They are

classified by:

- > -
A. (xs xl) 2(x2 X,
X; =%y
1, are type I
*1
X, =Xg
2, —— are type IIA
*1
X=Xy
3. - are type IIB
*1

ex. )< -
B. (xs xl] 2(x2 X4

X, "X
1. - are type I
Xy
X, =X
2. are type IIA
*
X -X.
3, are type IIB
X

Proof: (Clearly any type is A or B. Suppose <Ci> Tealize

. T
IV(r)A, Then since c2--<:1>c1 we have CZ'C1> Hc§ for all HeQ
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c,~C
as in the proof of Lemma III, So 21, Q. Further,
+ ‘1 Cz-Cq C,=Cy
- > -
(c3 cl} H(c2 cl) for all H § and hence = > H = -
< <y
c.-C
So the are I, IIA or IIB indiscernibles. Hence a IV{r)A
c
1

type must be in case Al, A2 or A3. Now suppose <ci: ie N*,cw>
are of type IV(r)B, By an indiscernibly argument,
+
~c.)< - - )< —c.}< -
(cs cl) (l+h](c2 cl) for all heQ . So {03 c2) h(c2 cl) h(03 cl)

for all h€Q+. HenceH(Cw-cz)<(cw~c1) for all HEQ+. Thus

C,~Co Sy Sy Cw=i
H - < pran So the are either I, IIA or IIB in-
CLU CUJ CLU

discernibles., Thus it remains to show that we get exactly one
type for each of the six cases. As the proof is essentially
the same as in Lemma IIT we will just list how IV(r) indis-

cernibles ci's may be encoded into I-indiscernibles,

i1
Al: < = Cl>
©
DoAY 24
AZ: <c2—cl ’ T ? cl)
1
S BT
A3: <ci-c ? T * c1>
1
_ C,~;
Bl: < =T s Cw}
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82 Ce17%4 w1 .
iy <cw+1-c ? Cr d w>
w+l

B3: <c“~c1
Cw“ci

Lemma V: For each irrational r<l there are exactly four types
with x1>Q and such that xi<x2-x1<x§ for s<r<t. They are

classified as follows: Fix the ne N such that 0<n+r<l, then

A, {XS-X1)>2(XZ_X1)

n
1. xl(xi-xl) are type IIA

n
2. xlixi—xl) are type IIB

-x_ 1< -
B. (Xz xl) 2(x2 Xy

n
1. xw(xw-xi) are type IIA

1l
2. xw(xw—xi) are type IIB

Proof: Clearly any type is in either case A or case B. Suppose
<ci: ie N'> realizes V(r)JA. Then since (c3~c1)>2(c2~c1) we

n n
have (cs—cl)>H(c2-c1) and hemnce c1£c3-c1)>Hc1[c2- Also,

Cl.

c?(cz—cl)>c?-r_€>H VHeQ . So the,c?(ci-cl)'s are either I,
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. 4. . o n_T+E n+T+e
—c.}< =
ITA or IIB indiscernibles, Now cl(c3 cl) €% ) .

Also, (c?(cz-c1))2>(cn r—e)z - o2{n+r)-2e

11 ! s, wWhich for suffi-
, . (n+r)+e n 2.n
ciently small £ is > ¢ S0 (cl(cz-cl)) >c1(cs-cl .

Hence the c?{ci—cl)'s cannot be type I. So any V{r) A type
is in case Al or case AZ. Now suppose <ci:ie N+, Cw> are
V{r) B indiscernibles. Then H(cz—c2]<(c3-cl) by an indis~

cernibility argument as in Lemma III. So H(cw—c3)<(cw—c2)

for all He Q+. Thus cg(cw—ci) are I, ITA or IIB. As above,

the cg(cw—ci) cannot be of type I. So any V(r) B type must

be in case Bl or B2. Hence, it remains to show that we get

exactly one type. for each case,

Case Al: Uniqueness: Suppose <Ci> are V(r)Al indiscernibles.

Since c?(ci—cl)'s are 1IA we have that

n

¢ (c.-¢,)
< —i—~3——l—~, cl(cz-cl)> are I-indiscernibles
cpley=ey)
c,-c
i.e. < EltEl" c?(cz-cl)> are I-indiscernibles.
271

Call them di's, dm. Note that we cannot encode the ci's with
just these., However, we will use di's, dw and ¢y to encode
the ci’s. We must show how any polynomial inequality in these

.can be resolved using only the case hypothesis. First any
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pelynemizal in the ci's really is expressible as a polynomial

in di's, dm and Cqe Suppose the monomials m, in p are

a, b, °i €3 aj bj
q.c,id 4. 1., a. ™ fhen [m. | ¢, d because d- > d, .
11w 1y in 1 1w w 1
a.+b, (n+r) n
Hence |m. | % ¢t because d % cr(c.-c,). Reorder the
i 1 w 1+72 ~17°

mi's so that al+b1(n+r) is a largest approximate exponent.

tet J = {i: m, has approximate exponent a

i + bI(n+r)}. Say

1

ml,m2eJ, i.e., al+b1(n+r) = a2+b2(n+r), Then al+b1n - az—bzn =

[bz—bl)r. Now since r is irrational and a bl,a2,b2, and n are

lJ
rational we have b2—b1=0. Hence b2=b1 and a

2=al. So for all

ied, m, has c, exponent ay and dm exponent bl' Now, p>0 <+ y m,>
b a; bi ilel
- Y m, cald ICEﬁ) >- ¥ m. (where jfi is ) m./c td 1)
it 1w it 21T e e
igJ o idJd ieJ
a;¥by(n+r)-£ L
Also | } m, i<cl for some €, by the definition of
i4J
a, b, a, b, Em.
J. So c,td 1(?m) > Y mi< Jfi >0 (since c gt [—=.
1 "w e , 1 17w ~
ieJ o

Now since Zﬁ is a polynomial in I-indiscernibles, it is deter-
mined. So any polynomial inequality in the ci's is completely
determined, and we have uniqueness., Note that this procedure is
recursive in r {i.e., if we can tell when q1>r and r<q2 then
we can effectively resolve any inequality).

Existence: Let <d.: ie N > be IIA—indiscerniblesnr Let e be

Va; * /g

such that di <e < dl 2 for 0<cz_1<n+r<q20 (This is possible

by compactness and the conditions n+r>0 and di X dj.) Let
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d,
c; = e+ —%-, (This is just the reverse of the coding given
e d
in the uniqueness part.) Then CymCy = (dzwdl)/en > —%—>
ntT-€ d, a. - °©
g ~ = e™7%. Now since ~§-% e’ we get e + ~%~% e and hence
e e e
r-g i r-¢ ~ r-g
> —_ > e -, >
we have e (e+ en 3 for e > g, So Cy=Cq c; In
other words CymCy > c? for all rational g<r, Also Cy=Cy =
d n+r+e
n 2 e THE 1 .r+c T+E
- Ll e = - =
(dz dl)/e < n n e < (e+ ) cl ° SO
a e e
provided the ci's are indiscernibles they must be of type
d.-d d :
V(r). Indeed cM(c,-c,) = -t (e+ L3P d.-d Vd.. so
1171 e ot i1 i

if the ci's are indiscernibles, 02(ci"cl)'s are IIA and we

would have existence. Now we show that ¢j's are indeed in-
c?(ci—clj

discernibles. Let us check that < s c?(czuc1)> are

n

c1lemey)
I-indiscernibles. WNote that if we had c?(ci-cl) = dio
This would be immediate, but now it requires a bit of work.

Well for i<j and me N

m m m

n 1
.- 2d. d, d. = d,
1u o s I e IR s
cl(cz—cl} Edé 2 2 2
-m m
c?(c,—cl) C?(C‘"Cl) ' 24, 1 1
<l =, Also, — 1 < =2 < zq < ¢ {c.-c.).
cn(c c cn(c - Ed 272 1V72 71
172 71 1~72 71 272

So by the proof of Lemma I they are I-indiscernibles., Indeed
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c, -c,
S iy i
we have <——l-—£ 's, ¢r (¢, ~c, )> are I-indiscernibles
c, =-C. i7", i
i, i 1 2 1
2 71
and ¢, -c, A c. whenever i.<i +o+%<i_ by the same argument,
i, 1, i 172 n

These conditions are all we need to apply the algorithm given
in the uniqueness proof. Since the conditions hold for any
increasing sequence of ci's we have that the ci's are indis-

cernibles, and hence V{(r)Aal indiscernibles,

Case AZ: Uniqueness: Suppose <c.t ie N+’cw> are V{(r)A2

indiscernibles. Then c?(ci-cl) are IIB and hence

c?(cw-cl) n
(1T~——-—~ s cl(ci-cl)> are I-indiscernibles and
cl(ci—cl)

C?(Ci—cl) iy c2+ra With this encoding we can apply the

algorithm given in case Al, to determine all polynomial

inequalities,

Existence: Let di‘s be IIB indiscernibles and choose e
1/q1 1/q d,

2 3
< + = g+ — ,
such that dl e < dl for 0<q1<n I‘<q2. Let ¢. e

The argument for case Al can be slightly modified to show

that these ci’s are V(r)A2 indiscernibles.

Case Bl: Unigueness: Let <ci's,cw> be V{r)Bl., Then the

Moy w i
cw(cUJ ci) s are IIA so < T

n
1 -
o S, cw{cUJ clj> are type I
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n, N+T
R C
B

and cz(cw—c . With this encoding we can apply the

algorithm in case Al to determine all inequalities.,

Existence: Let <dw,dj: ie (N+)*> be IIA indiscernibles and

let e be such that d; 7 <e<d for 0<q,<n+reg,.
d, d.-d d,
= _.......]; n - = 1 w _'_-]__-n(\‘, _ Y
Let c,=e I o cm(cw ci) o (e + en) Ay di dm Y di'

Also Cy=Cyq N ch So by essentially the same argument as in

case Al, the ci's are V(r) Bl indiscernibles,

Case B2: Uniqueness: The proof is like that of Case BI,
(o4 -C

< wrl Tw n

¢

but now =, R cw+1(cw+1

—cwj> are I-indiscernibles and
w+l
c ) n CH+I‘

n
Cc - . a
( wrl it ™Y Twel

c
wtl

Existence: As in Case Bl, but with di's chosen as IIB indis-

cernibles, B

Lemma VI: There are exactly ten types of indiscernibles with

x1>Q and with x,-x.<x." for all ne N. They are classified

27171
by:
A, (xs-x1)>2(x2—xl
1, are type I

X.~X
i1




2. < % are type IIA
i1
X.,~X
a) xs-xl < xl
271
X, =X
b) xl < 3-x1
2™
3., < x_ are type IIB
i1
X, -X
a) 3_x1 N X,
™%
X=X
b) xl < xs-xl
271

B, (xs—xl)>2(x2-x1)

1. T _x. aTre type I
w i
24 Y = are type IIA
w i
Xp=X
a) 31 x,
*37%2
X=X
371
b) *3 S XX
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3, . are type IIB
Lo™%y

X, -X

a) xs-xl < XS
372

X=X

b) XS < xs-xl

372

Proof: Clearly any type is either in Case A or Case B, Suppose

<c.> realizes Case VIA. Then cb 4——1——, 50 L Q. Also
i 1 e¢.-¢C c.-C
il i71
1 1
[cs-cl)>2(c2—cl) so ——¢ >2 T - Hence the T o are I,
271 371 il

IIA or IIB. Note that 2a, 2b partition subcase 2 .and similarly
3a, 3b partition subcase 3, So the outline is a partition of

the A cases., Suppose <ci: ie N+,cw> is type VIB. Then

1 1 + 1
- - <
H(c3 02)<(c3 cl), so H — < T for all HeQ . Q P
w 1 w "2 w "1

so the 's are I, IIA or IIB. So again we get a partition

w 1
of the cases., So it will suffice to show uniqueness and exis-

tence for each of the ten cases, Uniqueness is shown by
ceding the ci's into I-indiscernibles. Existence is shown

by undoing the coding from the uniqueness part. Now if in case
A we have co < L and if in Case B we have c. < ! .
e w1

This is what gives us the extra subcases for A2, A3, B2 and

B3, Since the proofs are essentially those of the previous

lemmas we will just give the coding into I-indiscernibles.
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c.~c1
C -C
w 1 1
AZa: < T o’ cl, p— >
i1 w 1

(To uncode, let the di's be IIA indiscernibles and choose e
4,
d

such that (d )1'1 < e and en < dw; then let Ci = 1_ +e) ,
W

i

¢ -C
w ] 1
azb: { e, , )
1 ci-cl cm—c1
c.,-C
A3a1<c—l_‘c-l", cl’c-l-c >
271 271
c.=-C
1 1
A3b: £ e, , )
1 ¢ -c cz-c1
1
Bl: < T ————~—>
w’ ¢ -cy
C ~C
BZa: < 'E-U% > Cp C_:-!.-C_ >
w i w 71
¢ -c
B2b: < Cp Cw_cl 2 3 {c >
w i w 1
c -c
wrl i 1
B3a: < =, C » » >
cw+1—cw w1 Cw+1 cm
c -C,
BSb: (¢ ., -2l i 1 -
wtl cw+l_cw Cm+1—cw>

Now we have classified all the types of indiscernibles with Xy
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infinite. Indeed we have shown more. We have shown how we
can transform most of the types into an I type, But let us

first summarize the primary result:

Theorem 3.2: The following is a complete classification of all

the types of indiscernibles containing x1>Q.

2
<
I. xl X

2
<
IT. 2x <x2 x1

1

X 2 K\

A, 2 < 13
Xl le
V2

X X

B, |- < |2
*1 X1

III1(x} (for each r rational 1) xz-x1<x§ and for all
ey -
g<r x1<x2 Xqe

A. 2 (xz—xlj <(x3-x1
xT

1, —*

are type I

are type IIA

are type IIB .,
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B. (xs—x1)<2(x2-x1)

T
x
1 S are type I
° X <X, M3
w1
T
X
2. are type IIA
X =X
w i
r
*u
3. are type IIB
X -X
w i

IV(r} (for each r rational < 1) X <x_-x, and for all g>r

17271
4
-x, <
Xy=X <X

A, 2(x2~x1)<(x3-x1

X, =Xg

1. - ars type I
*1
X=X

2, - are type IIA
1
X5 =Xq

3. = are type IIB
1

B. (xs—x1)<2(x2-x1

X =X,
1,

= are type I

X
W




X, X
2, = are type IIA
*
X ~X
3. = are type IIB
bd
w

V(r) (for each irrational r<1) for all Sy

Let ne N be such that O0<n+v<i

A. 2(x2—x1)<(x3-xl

n
1, xl(xinxl) are the type IIA

2. x?(xi—x are the type IIB

)
B. (xs—x1)<2(x2—x1)
1. xz(xw-xi) are type IIA
2, xg(xw~xi) are type IIB

~11
. <
VI for all ne N X2 Xl Xl

54
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1. % -x. Aare type I
11
1
2, — are type IIA
171
X ~X
a) 3~x1 < xl
%27
X, =X
b) x1 < xs-xl
271
1
3. are type IIB
X.-X
171
X, =X
a) 3_X1 . xl
7%
X, -X
b) x1 < xs-xl
271

1
1. po— are type I
w1
1
2. are type ITA
X =X
w i
X,-X
a) X3 xl < *3
3772
X,.-X
371
b) *3 < X=X
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3. are IIB
X .
1
X_-X
2) xs-xl < XS
372
X, =X
b) XS < xs-xl
372
Proof: By above. g

Note: Although there are only six general cases, the cases III,
IV or V are parameterized by reA (for 3 different sets A) so

that there are actually 2% types with K1>Q.

Corollary to Proof 3.2; If ci’s are infinite indiscernibles

over ¢, then they are also indiscernible over R.

Proof: 1If the ci's are not of type V then we may encode them
as I-indiscernibles. The algorithm of Lemma I works over the
coefficient domain R as well as for Q (i.e, find the sign of
the largest monomial). The algorithm is independent of the
indices so the ci's are indiscernible over R. If the ci's
are of type V(r) we may encode them as I-indiscernibles di's

1/ (n+r
i/( _')% e, - The algorithm of Lemma V also

and e where d
works over the coefficient domain R. So in this case we

also have the ci's indiscernible over R, g
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We now look at the positive finite indiscernibles.

Corollary 3.3: The following classifies all indiscernible types

with x,>0 and with x.<n for some ne N,

1 1
(i)r (for each algebraic number r>0) r<xl and for all seQ
with s>r, x1<s. Subcases X determining the type of
1

p _r’s. We get all possible infinite types.
i :

(ii)r (for each algebraic r>0) x.<r and for all s<Q with s<r,

1

5<x1. Subcases X determining the type of rlx 's. We
i

get all possible infinite types.

(iii)r (for each non-algebraic r>0) for all s,t<Q with s<r<t,

<x.<t,
s Xl T

—x )< {x.-
Al 2(x2 xlj (XB X,

i, are type I
. % yp
i
1
2. are type IIA
X.-X
i1
1
3, are type IIB
X. =X
i1

are type I
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are type IJA

are type IIB

Proof: Note that technically algebraic numbers are not in the
language of RCF, but since they are definable we can use them.
Now if ci's are positive finite indiscernibles then they are
obviously (i)r, (ii)r or (iii]r for some reR, We show that

the subcases are as stated in the outline,

Case (i)r: Uniqueness: Suppose <ci> satisfy (i)r° Let

1
di T er’
i

The di's are infinite indiscernibles since the ci's
are indiscernible over the definable number r. Suppgje the di‘s
are type X. Then for any polynomial P, p(zi)>0 > P(%f +r]>0 <
q(gi,r)>0 for the natural q <+ VA % aj(gi)>0 by uSing aE to
eliminate the r. Now aj[gi)§0 is determined by the type X

of the di's and hence p(ijo is determined. Thus each case X

of di's specifies at most ome type.

Existence: Let di's be infinite indiscermibles of type X. Let

1 i s . .
C, T + 1r. The di's are indiscernible over v, because T is

definable. Hence the ci‘s are indiscernibles. Indeed they

are (i) _ of Case X because 1. d, which are of type X.
T c.-T i
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Case (ii)r: As above, but let di lmar
i

Case (iii)r: Surely any <c.>'s realizing (iii)r are Case A

or Case B. If the ci‘s realize A then are I, IIA or

i
IIB because H(cz—cl)<(c3-c1 . If the ci's realize B then

. - < ) -
=N are I, ITA or IIB hecause H[c3 cz) (c3 cl). So it

will suffice to show we get at most one type for each subcase.

Uniqueness:

A Cases: Let <ci> be of type (iii)r. Then - are I,

IIA or IIB and so may be encoded as I-indiscer;ib%es di' S0
any p(ci)>0 <+ q(di,c1)>0. Now Q(cl) ¥ Q(r) because r is non-
algebraic and c, A r. Indeed Q(cl,gi) E Q(r,ail. So
q(di,c1)>0 ++‘q(di,r)>0. By Corollary 3.2, the di's are in-

discernible over R, Hence q(di,rjzo is determined so the

type of s fixes the type of the c;'s.

i1

B Cases: As above, but now = f

are the di's and Q(w) 2 Q(x).
w i

Existence:

A Cases: Let di's be indiscernibles of type I, IIA or IIB.

Let ¢, = %~ + r. Since the d,'s are infinite indiscernibles,
i
they are indiscernible over r. Hence the ci's are indiscern-
css 1
ibles. Also the c,'s are (iii)_. Now .. =
1 r c.-C 1 1
i1 -2
d. 4

1
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d.. S0 the 1
i c

are I, IIA or IIB

depending on the d;'s.

B Cases: Let di's be indiscernibles of type I, IIA or IIB.

Let ¢ =r- é— . The e, are (iii)r indiscernibles as above.
i

d.d
1 1 - 1 _ 1w e 1
MSos o ST 1 T Tod T Tad vy Sothe oo
w 1 - - i3} 1 (V] 1 &)} 1
d, dw Ta
1 w i
are I, IIA or IIB depending on the d.l's° O

Corollary 3.4: The types containing x1<0 are completely classi~

fied by specifying the type of -xi's.

Proof: Obvious, O

Thus we have a complete classification of all the order
indiscernibles of RCF., A couple of interesting consequences

are the following:

Coroliary to Proof 3,5: A type of indiscernibles is recursive

in two extended reals, r and s, where s is the cut in Q of Xy

and r is such that for
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T
§ = w0l “Xy Xy + (-le
s finite, xl>s: =~ N 1_5 + (xl-s}r
*1 %2 2
s finite, x, <s: L R . ¢ 1 Jr .
1 5-Xy S-Xq $-Xq

Proof: We just use the fact that we can code up the indis-
cernibles and then apply either Lemma I or Lemma V to determine

any inequality. (Note: at most one of r and s is non-recursive.)

Corollary 3.6: A type of an indiscernible set is uniquely deter-

mined by the polynomial inequalities in four variables.

Proof: Just check how many variables are needed to specify

the conditions in the outlines,

B, Interdefinability

As in the case of DOAG's we have interdefinability between

many of the types, but this time not between all of them.

Definition: A type of indiscernibles with r rational, +0, OT
-2 and with s algebraic, +®, or -« (as in Corollary 3.5) will

be called algebraic. Otherwise it will be called nonalgebraic.
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Also we will use the expression I type to mean the r=+%, s=+w

type.

Corollary 3,7: If <ci: i€Q> is an algebraic sequence of in-

discernibles then there is a definable map over a finite number
of the ci's taking a subset of the ci's of index set isomorphic

to Q onto indiscernibles <dj: jeQ> of any other algebraic type.

Proof Sketch: Apply the codings given in the uniqueness proofs

to convert ci’s into ek‘s of type I. Then use an inverse coding
to get the ek’s to map onto the dj's° 0f course this only works
smoothly if the index sets are appropriate for the codings.

To handle this difficulty we may have to throw out some of the

ci's. For exampie, we show IIB indiscernibles are definable

from IIA indiscernibles. Let <ci:i Q> be IIA. Take a sub-

sequence ordered as 1+Q, and relabel these ci's as <c0,ci: 1eQ>,

c.
(Ei—:ieQ, c0> are I-indiscernibiles. Call them <ei:isQ, ew>.
O

e

Now by inverting the coding for IIB we see th%t < 52 R ew>
o] i

are 1IB indiscernibles. Hence, the map f: =2 =4, is

C. 1
1
the desired coding. The other cases work in essentially the

same way. 0

Corollary 3.8: If an RCF contains algebraic indiscernibles

<ci: ieQ> then it contains algebraic indiscernibles <di: 1eQ>



of every algebraic type.

Proof:; Immediate by Corollary 3.7. O

However, the nonalgebraic types are a different matter,

Proposition 3.9: The RCF F generated by the type I indis-

cernibles <ci: icI> contains no nonalgebraic indiscernibles.

Proof: Any element in F is the solution of some Zpi(gjxl,
Suppose a solution is eRireR, where T is a transcendental. Then
Zpi(gjrlQﬂ. Say.ml

Then Zqirl‘%jo where q; is the coefficient of m, in pi(g).

.
is the largest monomial occurring in Epi{c)ri.

But this can't happen because r is transcendental. So there are
no s=nonalgebraic types in F., Now suppose e is infinite and a
solution to Epi(g)xi. It is easy to check that e cannot be

a new I-indiscernible, so e%ci for some . Indeed since all
the monomials must cancel out r must be rational. In particu-
lar if <d.> is a sequence of infinite indiscernibles with

r<l then dl%di%ci for some r rational. Also, dz-dlkcjfor some
s rational, But then the di's cannot be of type V. Hence
there are no r=irrational, s=+w indiscernibles in F. Hemnce

there can be no r=irrational indiscernibles in F, So F

contains no non-algebraic indiscernibles, O



50 in looking at indiscernibility types in models we want
to focus primarily on the I-type and also on the nonalgebraic

types.

C. Structure Theory

Proposition 3.10: A RCF F has up to order isomorphism a unique

maximal index set of type I-indiscernibles.

Proof: By Zorn's Lemma there exists maximal sets. Suppose
<ci: ieI> and <dj: jeJ> are both maximal in F., In the language
of ordered groups {Z,Ci: icl} and {Z,dj:jeJ} are DOAG (1)
indiscernibles (since for all n,2n is finite). Indeed they are

maximal in F, So by Propesition 2.5 we have (I,<) 2 (J7,9. 0

Indeed we can say a bit more,

Theorem 3.11: If (F,<) is an ordered field containing <Ci: iel>

as a maximal set of I-~indiscernibles, then <ci: ieI> is also

maximal for the real closure of F.

Proof: Pick any e in the real closure of F, We will show that
e is not a new C» We may assume e>1 by taking negatives or
reciprocals. Now we have anen+...ale+a0=0 for some ai‘s in E,
For each i, if ay is infinitesimal (i.e. <% for all ne N+)

multiply the polynomial by %—-o This guarantees at least one
i
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coefficient is infinite or finite. Suppose |an| is the largest
coefficient., If a is finite then the polynomial is "near
standard" (i.e. close to a polynomial over that reals). Then
& must also be near standard (i.e. ekr, for some reR}. Thus
o,

e would not be a new c.. So suppose [an| ¥ ¢ “were %, <R,
Let a, ,a; ...a, be all the a_'s such that |a, | ~ .t .

1.7°°1 i 1 1. b

I 2 .k J
Say we have n such ai,'s.

J

Case 1: fi=l. Let Iajl be the second largest coefficient. If
|aj|n < lay| for all ne N then we will get e & c? for some a.
For if e < |ak|E for all e’ then the akek term will dominate
and the polynomial could not be zero. While if e > |ak|n for

all ne N then the a.nen term will dominate. Thus e%c? and we

!
would be done., So assume IajI N lak[a (@'<1l}, Multiply the

polynomial by %— and we get

J
a aA ~
z_&eg-{- E-—&eg-?-ik—ek: 0
a, a, a,
J J J
a an .
where 2& 's are finite, E& 's are infinitesimals, and ;E-% c? s
J J J
o 1=t n n o . .
where o= —af*->0. If e>ci for all n then a_e¢ will dominate, a
i

k

. . ) . .
contradiction. 1f e<ci for all £, then e will dominate

N PR

. . .. A
which is alsc a contradiction. So e&ci for some ac<R and we are

done with case 1,
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Case 2: fi>l. Let 2 be the smallest of the a. ...a. 's with

o 1 %
!ai [ n cil. Multiply the polynomial by-% and we get
] a
i i i . e s
¥ b.e ¥ ) b, e+ Y bg,e” = 0 with b,.'s infinite,
1611 1612 : 1€I3
the bZi's finite and the bsi's infinitesimal, We have at least
one ieI2 (since %-= 1) and at least one other infinite or
a
finite b, (namely ;EJ. We may assume e < |ak|E for all e,
a
or else we are done. Hence ¢ < la|E for all €eQ'. Then,
L% 8 . e
for each 2613, bsge = == ¢" which is an infinitesimal (because
a
.- a '
Lak[ <c¢® s SO :&[ <-%? and e<d§ for €'<g), So we will be
. 3 a;

able to ignore these terms. We now repeat the process by
applying either Case 1 or Case 2.

Eventually this process will terminate because every appli-
cation of Case 2 reduces the number of non-infinitesimal teims
by at least one, and yet retains at least one non-infinitesimal
coefficient (in fact at least 2). Also, the "ignored terms"
stay infinitesimal--indeed they get smaller. So eventually we

n "y

cl
have e ~t TeR or e A Y . S0 e is not a new di' 1l
i j

coed,
1.

Corollary 3.12: Any ordered field (F,<) has a unique index

set for a maximal set of I -indicernibles, up to order iscmorphism.
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Proof: Apply Proposition 3.11 and Theorem 3.12. dJ

Let us now take a look at some of the RCF's, F, for a
fixed I. Well, I=¢ iff F is a real closed subfield of R,
What about for I = {1}? The smallest such subfield is Q(c)
(the real closure of Q(c)) with ¢>Q., A larger field is
-ﬁgfzy.for;Fo = R. In fact, we can extend even further. Let

L be the Levi-Civita nonarchimedian field. T.e.,
v v

L= {at % iat 1 + .ve ¢ 2.eR, v.eR with the v, increasing
o 1 i i i

and unbonded, and t an infinitesimal }. Note that'{%} is

a maximal set for L. More generally, for any I the minimal

model with maximal I-indiscernibles <ci: ieI> ig the field

Q(ci: icI}. The maximal ones are formal power series fields.

Definition: The formal power series field, F[[G]] where F is a
field and G is an ordered abelian group, is the set W(Fa,ae(G,<))

with F =F and with (a+f) = o +8 and (a-f) = bczz-a % B

Note that since @ and B are well founded sequences the
product is well defined. By Hahn, F[[G]] 1is an ordered
field (see Fuchs). Also, any F is embeddable in R[[G]] where
G is the ordered group of archimedean classes of F (see Fuchs,

but note that he does things in a more general fashion.) Now

if F has maximal indiscernible set <ci:ieI> then its group
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of archimedean classes G is contained in W(Ri: ieI+) where
R, = Rand I' = <{0},I>. (Recall that <2,c,: iel> is a max-
imal (1)-indiscernible set as a DOAG, which is why we use I+.)
Hence, F embeds in R[{W(R,:ieI")]]. Also RI[W(R, : 1e17]
has archimedeah classes W(Ri:ielj, so it has maximal indis-
cernibles <ci:i€I>. Hence the maximal ordered field F with
index set I is R[[W(Ri:iel+)}]o {(Note by maximality and
Proposition 3.11 F is real closed.) So any F with maximal
index set <Ci: ieI> satisfies: QTE;?_EETTE FER[[W(Ri: i£I+)]].
The use of the other algebraic indiscernible types yields
no new information. If we use the non-algebraic types we do
get slightly more information. First the collection of types
with s irrational indicates the residue field. That is, let
A = {s:s occurs as an (r,s) type in Fl, Then'KfE;T_IETTE F ¢
'A[{Ri: ieI+]]. We also know a little about the component
fields Ai. But since the choice of the ci's is not canonical
we can't really pin down what the A.1 are. There is the further
problem that the types don't tell which irrational powers
occur in the same field Ai' Finally, we can't determine which
infinite sequences occur in F. That is, we cannot tell how
pseudo-complete (spherically complete) that F is. So the
classification of RCF indiscernibles is not as comprehensive
as for DOAG's. But given that there is so much flexibility as

to how an ordered field may be extended, it is relatively nice.
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4. OTHER EXAMPLES

The preceding two chapters show how order indiscernibles
may be used to partially characterize models for the theories
RCF and DOAG. The following examples are not technically diffi-
cult, but they are presented to provide more information as to
how well the ordered indiscernibles can be used to describe

models.

A, Variations on Dense Linear Orders

The following is a generalized version of dense linear
<
orders. Let K be any index set. Let Lp = {<,Pu(x),P&(x) . aeK}.

Let TK be the theory:

(1) < is a demse linear order without endpoints
(2) The Pa’s are infinite

(3) xePa A yeP, + x<y  {for evexry a<@}

B

<
(4) xeP A zeP A x<y<z > yeP

(5) P;(x) o V2(P_(2) > 2<x)

I

() PL(x) > (PyL)V Pg(x)) for every o<B such that

¥y (v<a v B<Y)

We may think of the P 's as naming skies or pieces of

a dense linear order. Note that TK has QE. (This is the




reason for the P;’S.} Let M = {Proper Dedekind Eﬁfﬁ'of X thég?i  
are left and right limit points}, L = {Proper Dedekind cuts
of K which are left limit points} and let R = {Proper Dedekind
cuts of K which are right limit points but not left limit

points},

Proposition 4.1: The indiscernible types for T, are

K

o, dekK? x1€Pa'

(1)

(2) (xle%PB(X ) for every o,8 with a<m<3,

m,meM o

{S)R,ReL (x )Ampg 1(x )ANPQ I(X ) for every a<f
where 2+1 is the first point of X bigger than 2.

(4)

T,reR r 1(X )A“P (X ) for all a>r, where r-1

is the first point of K less than r.

Proof: For existence use compactness and for uniqueness use

automorphisms, C

So for complicated K's there is a natural yet complicated
classification of the types. Also note that the collection
of maximal sets of indiscernibles completely specifies a

model up to isomorphism,
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B. Atomless Boolean Algebras

For the definition of this theory see for instance

Chang and Keisler,

Proposition 4,2: There are 5 types of indiscernibles for

Atomless Boolean Algebras,

(1) xlnx2=0 A xinxz#o A xinxz#o A xinxg#o
(2} x1<x2
(3} x2<x1
(4) x1<x§
(5) X§<X2

Proof: Uniqueness: If <ci: ieI> are indiscernibles which
satisfy (1), then the ci's are independent and hence all
formulas are determined. Otherwise we must be in one of

Cases (2)-(5). We show each of these is unique. Well if

€1, the ci's must be linearly ordered so the type is
specified. Similarly, with Case (3). If c1<c§ then
2 c s s i e ¢
<
c2<c1 and hence c3<c:1 by indiscernibility. Thus cz<c,

alse. Hence the cl's are an anti-chain and the type is
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specified. Case (5} is like Case (4) only now the cg's are

an antichain.
Existence: Use the compactness theorem, 0

Now types (2} and types (3) are essentially the same even though
they are not explicitly interdefinable in the theory. Types

{4) and types (5) are interdefinable by X, xzo S0 we have
only 3 kinds of maximal indiscernible types to describe a model.
Clearly these are important, but they are not nearly enough to
characterize a model up to isomorphism. Note that this example
also shows that a theory can be "independent" ({i.e., have

2% l1-types over k constants) and still have a simple classi-

fication of its indiscernible types.

C. Real Vector Spaces of Dimension 1

We now look at an example closely related to RCF--the
theory of one dimensional vector spaces over a real closed field,

Since the models of this theory are "isomorphic" to models of

RCF we ought to get a similar classification for the indiscern-

ibles. Let L =<V,+v; OVJRJ+ OR:1R9<R3 .Rv

T =R 1is an RCF + V is a vector space over R +

R’ R > and let

YyeV (YA0 > VxeV 3reR(x=1y))



Let £(x,y) = |0 if y=0

r for the unique r s.t. x=ry if y#0.

Then T has QE over the language Lu{f}. The possible types
with x<R are exactly those for an RCF. If xeV then things are
a little more complicated. Well, if some VO%O was added as

a constant to the language then ¢, = f(ci,vo)vo arid so the

type of s Would be fixed by the type of f[Ci’vo)€R° But we
have assumed that there is no v el so there are potentially

fewer types.

Proposition 3.3: The types of indiscernibles <Ci> with cieV

e. 2,

are specified by the type of 2+ where c. = - c and the
e i el 1

ei's are indiscernibles in RCF,

Proof: Pick any indiscernibles <ci> such that cleV. Let

a, be such that ;= a¢y for i1 (i.e., ai=£[ci,c1)).

Note that the ai's are RCF indiscernibles, Similarly,

bi=f(ci,c2) for i»2 are also indiscernibles. Now for i>2
a,
we have a.c =c,=b,c.=b.a.c., So b.= —=, But by indiscerni-
i1l 717172 17271 12,
bility the type of the bifs is the type of the ai's. So it
e,
is a necessary condition that c.= - C.
i el 1
RCF indiscernibles {ei} . Now for existence, let ai‘s be

for some set of

a.
any type of RCF indiscernibles and let c,= E%-Cl' Then
: 1

73
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w

cj for k»j. Since the type of the ;5.}5 is the same

a.

as the type of Ei 's we have that the ci's are indiscerni-

1

Proposition 3.4: The RCF indiscernible types with x2>x1 and

with the Ei 's the same type as the x;'s are:

x1>Q {i.e. s=+x)

xi's are type 1

xi's are type IIB

1<x1<l+€ for eeQ+ (i.e. s=1)

. - < -
1. 2(x2 xl) (xs xl)

are type 1

are type IIA

are type IIB

2(x2-x1}>(x3~x1)

< —n are type 1
w i

% -x. are type IIA
w1
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1
c) T % are type IIB.
w i
*2
Proof: X,”X, =+ — > 1. Hence x.>1 by hypothesis, If
271 Xy i

xi>1+s then the type is infinite and we are in Case A,

otherwise we are in Case B, If xi‘s are in Case A then

X,

;5 's are alse infinite and hence the xi's are I, IIA or
1

X.
IIB. IIA is not possible because then EE' would be type I,
1
If the type is of Case B then clearly we are in subcases
X
{1) or (2). Suppose we are in Case Bl. Then 2(;2-- 1) <
1

*3
(~—= - 1). Hence the
Xq

are I, IIA or IIB. Hence

|

3 El are I, IIA or IIB., This is enough to determine the type,
i

Suppose the type is a B2, Then

are I, IIA or IIB.

Tw o,
Xy .
X1 *n x1 0 Xn X
pt — — —_— . L)
Now P(xl,...xn) 0 <> P(X see )20 P(X T ey )>0.
0 o} w o W o}
X
Since the type of P is fixed, the polynomial is determined.
1

Hence the type of the xi’s is determined. So we have unique-

ness. For existence let ei’s be I, IIB, III(1)Al, III(1)A2,
oa

TII(X)A3, III(1)Bl, III(1)B2, or ITI(1)B3. Let c.= Ei-vo for
' 1
soem fixed vOeV. One can routinely check that they meet the

conditions in the outline. U
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Corollary 3.5: The indiscernible types of a real vector space

of dimension 1 with xieV are characterized by specifying which of
the eight types of RCF indiscernibles from Proposition 3.4 the

f(xi,le's are,

Proof: Follows immediately by Proposition 3.3 and by

Proposition 3.4. - O

Note that all of these new types are interdefinable with type I
RCF indiscernibles. 5o, as expected, we get no added structural

information.
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