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Kakeya problem in Rn

Kakeya 1917

Find a figure of the least area on which a segment of

length 1 can be turned 360
◦ by a continuous movement.

Besicovitch 1928

There exist such sets of arbitrarily small area.

Kakeya set in Rn

A set containing a line segment in every direction

Conjecture:

dim(Kakeya set) = n?

Best known:

dim(Kakeya set) > cn

for some c < 1
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Finite fields

Line

A set of the form {a + bt : t ∈ Fq}

Kakeya set

A set containg a line in every direction

m-dimensional

Set of about qm points

Wolff 1999

Does every Kakeya set in Fn
q contain cnq

n points?

Dimension 2 is easy
First line q points

Second line q − 1 points
...
...
...

q+(q−1)+···+1=(q+1
2

)
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Bounds on Kakeya sets

Wolff 1999

Does every Kakeya set in Fn
q contain cnq

n points?

Dvir 2009

At least Ω(qn−1) points.

Saraf, Sudan 2008

Yes, with cn = 1/2.6n .

Dvir, Kopparty, Saraf, Sudan 2013

Yes, with cn = 1/2n .
Not for cn > 1/2n−1 .

Thm. (B.–Chao)

Yes, with cn = 2
n−1 .

Sharp!
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Dvir’s argument
Every Kakeya set K ⊆ Fn

q has at least
(q+n−1

n

)
elements.

Proof
1© Find polynomial f vanishing on K

- f (p) = 0 is a linear equation on f

- dim(Degree-d polynomials) =
(d+n

n

)
- Take d = q − 1

2©

` ⊂ K

I ` = {a + bt : t ∈ Fq}
I f (a + bt) = 0 on Fq

I f (a + bt) is zero poly.

I [tdeg f ]f (a + bt) = 0

f (b∞) = 0

b∞

a

a + b

a + 2b

· · ·
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Dvir’s argument
Every Kakeya set K ⊆ Fn

q has at least
(q+n−1

n

)
elements.

Proof
1© deg f ≤ q − 1 vanishes on K

2© ∀~b f (b∞) = 0

3©
~a

~b

~c

a∞
b∞

c∞

Fn
q

Pn−1

4© f = 0 on Pn−1

←− qn−1 conditions

5© fd = 0

←−
(q+n−1

n−1
)

coefficients
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Our argument for n = 3

Every Kakeya set K ⊆ F3
q has at least 1

4
(q3 +q2) elements.

Proof
1© Better space of polynomials

A
def

= {(α1, α2, α3) : α1 + α2 + α3 < 2q and α1, α2 < q}

V
def

=
{∑
α∈A

cαx
α : cα ∈ Fq

}
.

2© Different vanishing condition{
f (p) = 0

∇f (p) = 0
for every p ∈ K .

4 conditions

per point

dimV = q3 + q2

⇒

4|K | ≥ q3 + q2
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Our argument, general

- The n = 3 does NOT generalize

- Vanishing order to →∞ DKSS 2013

- The conditions depend on p and ` Zhang 2020
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Our argument, general

- The n = 3 does NOT generalize

- Vanishing order to →∞ DKSS 2013

- The conditions depend on p and ` Zhang 2020

` ⊂ K

I ` = {a + bt : t ∈ Fq}
I g = Dαf with |α| < r

I ord g(a + bt) ≥ s

everywhere on Fq

a

a + b

a + 2b

· · ·
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Our argument, general

- The n = 3 does NOT generalize

- Vanishing order to →∞ DKSS 2013

- The conditions depend on p and ` Zhang 2020

No idea why it is sharp!
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Lower-order terms

Thm. (B.–Chao)

Every Kakeya set in Fn
q satisfies |K | ≥ 2

−n+1qn(1 + n−1
2q ).

Construction

There are Kakeya sets in Fn
q of size 2

−n+1qn(1 + n+1

q ).

But you said ‘sharp!’
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