21-373 Final exam theorem list

- Two out of eight questions on the final exam will ask you to prove results that we proved in class. This document is about them.
- In proving the results you can use only results that precede it in the book/lectures. [For example, you cannot use the classification of finite abelian groups to prove Application 1 on page 61.]
- You must clearly state all the results that you use in your proof
- You can give any valid proof. You do not have to give the same proof as in the book or lectures.
- The proofs must contain all the details, including those that were left as exercises in the book or lecture.
- Below is a complete list of possible results that might appear on the final
- 1. (Lemma 2.3.1) Let G be a group. Then
 - (a) The identity element of G is unique.
 - (b) Every $a \in G$ has a unique inverse in G.
 - (c) For every $a \in G$, we have $(a^{-1})^{-1} = a$.
 - (d) For all $a, b \in G$, we have $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.
- 2. (Lemma 2.3.2) Let G be a group, and $a, b \in G$. Then the equation $a \cdot x = b$ has a unique solution in G.
- 3. (Lemma 2.4.1) A nonempty subset of the group G is a subgroup if and only if
 - (a) $a, b \in H$ implies that $ab \in H$,
 - (b) $a \in H$ implies that $a^{-1} \in H$.
- 4. (Lemma 2.4.2) If H is a nonempty finite subset of a group G and H is closed under multiplication, then H is a subgroup of G.
- 5. (Lemma 2.4.5 and Theorem 2.4.1) Let H be a subgroup of a group G.
 - (a) There is a bijection between any two right cosets of H in G.
 - (b) If G is a finite, then o(H) divides o(G).
- 6. (Corollary 1 on page 43) If G is a finite group and $a \in G$, then $o(a) \mid o(G)$.

- 7. (Corollary 5 on page 44) If G is a finite group whose order is a prime number p, then G is a cyclic group.
- 8. (Lemma 2.5.1) Let H, K be subgroups of a group G. Then HK is a subgroup G if and only if HK = KH.
- 9. (Theorem 2.5.1) Let H, K be finite subgroups of a group G of orders o(H) and o(K). Then $o(HK) = \frac{o(H)o(K)}{o(H\cap K)}$.
- 10. (Lemma 2.6.2) The subgroup N of G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.
- 11. (Lemma 2.7.3) Let G, \overline{G} be groups. If ϕ is a homomorphism of G into \overline{G} with kernel K, then K is a normal subgroup of G.
- 12. (Theorem 2.7.1) Let G, \overline{G} be groups. Let ϕ be a surjective homomorphism from G to \overline{G} with kernel K. Then $G/K \approx \overline{G}$.
- 13. (Application 1 on page 61) Suppose G is a finite abelian group and $p \mid o(G)$, where p is a prime number. Then there is an element $a \neq e$ such that $a^p = e$.
- 14. (Lemma 2.8.2) $\mathcal{I}(G) \approx G/Z$, where \mathcal{I} is the group of inner automorphisms of G, and Z is the center of G
- 15. (Theorem 2.9.1) Every group is isomorphic to a subgroup of A(S) for some appropriate S.
- 16. (Pages 78-80)
 - (a) Give a definition of an *even permutation*
 - (b) Prove that the set of even permutations in S_n is an index-2 subgroup.
- 17. (Theorem 2.11.2) If G is a group, and $o(G) = p^n$ where p is a prime number, then $Z(G) \neq (e)$.
- 18. (Page 86) If $o(G) = p^2$ where p is a prime number, then G is abelian.
- 19. (Slightly easier form of Theorem 2.12.1) If G is a group, p is a prime number and $p^{\alpha} \mid o(G)$ and $p^{\alpha+1} \nmid o(G)$, then G has a subgroup of order p^{α} .
- 20. (The "only if" direction of Theorem 2.14.2) Let p be a prime number. Let G, G' be abelian groups of order p^n and $G = A_1 \times \cdots \times A_k$ and $G' = B_1 \times \cdots \times B_S$, where each A_i and B_i are cyclic of orders $o(A_i) = p^{n_i}$ and $o(B_i) = p^{H_i}$ satisfying $n_1 \ge \cdots \ge n_k > 0$ and $h_1 \ge \cdots \ge h_s > 0$. Then G and G' are isomorphic only if k = s and for each $i, n_i = h_i$.
- 21. (Lemma 3.2.1 for rings with 1) If R is a ring with 1, then for all $a, b \in R$

(a)
$$a0 = 0a = 0$$

- (b) a(-b) = (-a)b = -(ab)
- (c) (-a)(-b) = ab
- (d) (-1)a = -a
- 22. (Fixed Lemma 3.2.2) Let R be a finite integral domain with at least two elements. Then R is a field.

- 23. (Part of Theorem 3.4.1) Let R and R' be rings and $\phi: R \to R'$ be a surjective ring homomorphism with kernel U. Then R' is isomorphic to R/U.
- 24. Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then R is a field.
- 25. (Theorem 3.7.1 + its corollary on page 144) Prove that every Euclidean ring is a principal ideal domain.
- 26. (Theorem 3.8.1) J[i] is a Euclidean ring.
- 27. (Lemma 3.8.1.) Let p be a prime integer and suppose that for some integer c relatively prime to p we can find integers x and y such that $x^2 + y^2 = cp$. Then there exist integers a and b such that $p = a^2 + b^2$.
- 28. (Lemma 3.9.2) Let F be a field. Given two polynomials f(x) and $g(x) \neq 0$ in F[x], then there exist two polynomials t(x) and r(x) in F[x] such that f(x) = t(x)g(x) + r(x) where r(x) = 0 or deg $r(x) < \deg g(x)$.
- 29. (Lemma 3.10.1) If $f, g \in J[x]$ are both primitive polynomials, then fg is a primitive polynomial too.
- 30. (Lemma 3.11.4) Let R be a unique factorization domain, let F be its field of quotients. If $f \in R[x]$ is both primitive and irreducible as an element of R[x], then it is irreducible as an element of F[x]. Conversely, if the primitive element of $f \in R[x]$ is irreducible as an element of F[x], it is also irreducible as an element of R[x].
- 31. (Theorem 5.1.1) Let K, L, F be fields. If L is a finite extension of K and if K is a finite extension of F, then [L:F] = [L:K][K:F].
- 32. (Theorem 5.1.2) Let F be a subfield of K. Then $a \in K$ is algebraic over F if and only if F(a) is a finite extension of F.
- 33. (Special case of Theorem 5.1.4) Let F be a subfield of K. If $a, b \in K$ are algebraic over F, then a + b is algebraic over F.
- 34. (Theorem 5.1.5) If L is an algebraic extension of K and if K is an algebraic extension of F, then L is an algebraic extension of F.
- 35. (Problem 1 on page 219) Prove that e (the base of the natural logarithms) is irrational.
- 36. (Lemma 5.3.2) Let F be a field. A nonzero polynomial $f \in F[x]$ of degree n can have at most n roots in any extension of F.
- 37. (Simplified Theorem 5.3.1) Let F be a field. If p(x) is a polynomial in F[x] of degree $n \ge 1$ and is irreducible over F, then there exists an extension E of F in which p(x) has a root.
- 38. (Theorem 5.3.2) Let F be a field, and $f(x) \in F[x]$ be of degree $n \ge 1$. Then there is an extension E of F of degree at most n! in which f(x) splits into linear factors.
- 39. (Lemma 5.5.2) Let F be a field. The polynomial $f(x) \in F[x]$ has a multiple root if and only if f(x) and f'(x) have a common factor of positive degree.
- 40. (Theorem 5.5.1) If F is a field of characteristic 0 and if a, b are algebraic over F, then there exists an element $c \in F(a, b)$ such that F(a, b) = F(c).