Algebraic Structures: homework #11 Due 18 November 2024, at 9am via Gradescope

To receive full credit, all work must be shown. A passage means what careful but unimaginative reader thinks it does. Add details if in doubt. The problems should be written neatly and in order they were assigned.

A typical homework assignment is graded out of 20 points: 4 points for correctness of each problem. Bonus points result in additional credit.

0. (Ungraded)

- Finish reading Section 5.1; this is what we covered by the 11th week. Did you find any mistakes or typos? If you did not, you might not have read carefully enough.
- Continue reading Chapter 5.
- 1. Problem 4 on page 215.
- 2. Problem 5 on page 215.
- 3. Problem 9 on page 215. [For (b), show that F contains J_p . For (c), use Lagrange's theorem.]
- 4. Let p be a prime number, and n is a positive integer. For a polynomial $f = a_0 + \cdots + a_n x^n \in J[x]$ denote $\overline{f} = b_0 + \cdots + b_n x^n \in J_p[x]$ its reduction modulo p, i.e., $b_i = a_i + pJ$.
 - (a) Prove that if f is monic (i.e., $a_n = 1$) and \overline{f} is irreducible, then f is irreducible.
 - (b) Give a non-monic example (but still with $a_n \neq 0$) such that \overline{f} is irreducible, but f is reducible.
 - (c) Give an example of a monic f which is irreducible, but such that \overline{f} is reducible.

For parts (b) and (c), you can choose prime p. You do not have to give examples for every p.

5. Test is on Wednesday. Free 4 points.